Embedded Operating
Systems

Che-Wel Chang
chewei@mail.cgu.edu.tw

Department of Computer Science and Information
Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

Real-Time Scheduling Il

Energy Saving Designs

Two Approaches to Reduce the

Power Consumption of Devices

» Dynamic Voltage and Frequency Scaling (DVFS)

> Scale down the voltage and/or frequency to reduce the processor
power consumption

o An example: reducing 17% of the energy consumption for H.264
decoding over Tl DaVince DM6446

» Dynamic Power Management (DPM)

o Change to an energy-efficient state to reduce the power
consumption of peripheral devices

o An example: reducing 15% of the energy consumption for the
browser over Android Galaxy Tab

Power
Consumption

1625mwW 2023mW 3166mW

Android
Galaxy Tab

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Informat

Dynamic Frequency and Voltage
Scaling Designs

» The Observation: It is energy-efficient to scale down the processor
frequency dynamically to fit current workloads
gask 1 Jask2 i) Task 1 Task 2

———

Frequency

Frequency

Time Time

» The Approach: It keeps a window or buffer to estimate the workload

Short Window

Long Window

Utilization

CPU

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Energy-Efficient Multimedia
Platforms

» Energy-Efficient ARM-DSP Platforms for H.264
Decoding

> Analyze the workload variance of multimedia jobs
o Take real platforms for an ARM+DSP design

> Achieve more than 17% energy saving for the ITRI PAC SoC

Implementation on a Implementation on an Implementation on
PC with Phenom I Android Phone the PAC Soc

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Examples of Energy
Saving Designs

Task Model of Multimedia

Applications
D

O 4 B = 6 v

< I

'

S

=

C, c C10
C, C3) Cs Co X Ce % > time

4P 10P

» Atask consists of a sequence of jobs
» Jobs arrive by a period: P time units
» The workload of future job can be predicted based on the log

» Because of the buffer size limitation, the number of pending jobs
at any time point is bounded by a fixed integer B

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Processor Power Model

n

A

Dynamic power
consumption function P(s)

Dynamic Power (\Watt)

n
>

s, =0 S; S S
) T T3 ? Tl Speed (Hz)
sleep mode Sin Srax

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

P(s) = Cy Vo4,

s =k (Vdd _Vt)2
Vdd

where
C Is the effective switch capacitance
V. is the threshold voltage
Vy IS the supply voltage

k is a hardware-design-specific constant

Concepts of DVFS Algorithm

» An Energy-Efficient Multimedia Application
=>» Make the frequency as low as possible
=>» Meet all performance constraints

=>» Find the critical (most demanding) interval by calculating
the maximum required speed in all intervals

A

speed

j i

| ‘
‘ » time

6 8
Current Sliding Window

© All Rights Reserved, Prof. Che-Wei Chang, b : ‘ ’ f $ 2% 10

Department of Computer Science and Information En

Hardware Platform

» Platform: Texas Instruments DaVinci DVEVM (The
Digital Video Evaluation Module)

Speed Mode

Frequency (MH2z)

© All Rights Reserved, Prof. Che-Wei Chang, 11

Department of Computer Science and Information Engineering

Input Video Streams

2D Animation

3D Animation

Action

News Conf. 7

Number of 17985 19182 19182 1751
frames

EPS 29.97 29.97 23.98 23.98
Bit-rate 754.99 1237.58 1798.87 631.27
(kbps)

PSNR 42.44 41.85 40.04 42.49
Resolution 720x480 720x480 720x480 720x480

© All Rights Reserved, Prof. Che-Wei Chang, f $ A 12

Department of Computer Science and Information Engi

Experimental Results

250

200

150

100

Energy Consumption (J)

50

2D Animation 3D Animation Action News Conference

Video Bitstreams

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Energy-Efficient Virtual Cores

» A Virtual Core

A sporadic server in hypervisor’s view IL’,M M‘L_k], M”L
> An individual core for user applications | Guest S | [cuestos |

» Energy-Efficient Virtualization™ ESH RS
o Approximation bound analysis |\ Hypervisor

o Areal implementation on ARM 9 with L4 |‘
microkernel with DVFS supports

/ The Workloads

Physical Core

The Power Trace \
of Virtual Cores of the System
100% S

RN s oo

3 50% - o 0. -t

’os \V — e \/irtual g 828 D sl

2 0%"rn'n'n‘rn%\ Core 2 s OCwmMmaST oA N®MO W

— = oSNNS N A O O 0N

S °CIRIFIR Virtual 3 SAIFIIIIZNR

~ 0O Mm NN O E L I e B I |

NS~ oS Core 3 - .
. e Total Time (ms)

\ Time (ms) /

* Yu-Chia Lin, Chuan-Yue Yang, Che-Wei Chang, Yuan-Hao Chang, Tei-Wei Kuo and Chi-Sheng Shih, "Energy-Efficient Mapping Technique for Virtual
Cores," in ECRTS. 6-9, 2010.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Virtual Multi-Core Scheduling

» The significant growing on the number of cores per system
» The consideration of the DVS functionality in virtual cores

i Reduce
fré@lqechvﬂ.ﬁf; frequemnoy =10.4f

Virtual ! Virtual
Core 1l Core 2 : :
: Migration
Hypéervisor
Physical Physical
. Core 1 Core 2 Turn off
Two virtual cores :
share a physical core freq =f frequency =0 A real-time task:

Virtual Core 1 Virtual Core 2 MIsS period: 5ms

e daadline execution time: 2ms

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gun

Power-Aware Virtualization System

» Virtual core model

» Hypervisor
functionalities

» Minimize the energy
consumption

Task Task Task Task Task Tasm

Guest OS Guest OS

Virtual Core 1

Virtual Core 2 §f Virtual Core n

» Manage virtual cores with
virtual core functions

Pﬁysica| Core
1

ola= 4 1

; Lt] » Guarantee the needs of
5 requency _
Adjust frequency each virtual cores

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Che

Virtual Core Model - Real Time
Constraint

rz;{pz, cz} '[;{pi) '[3;{p3, c3}

Virtual

» Given a set of real-time tasks {t,, T, ..., T}, the timing constraints of
these tasks can be met with a virtual core by setting
n
C.
T =ged(p, P,r--P,) & C 2Z?><T
i=1 Mj
if the real-time tasks are scheduled under the Earliest-Deadline-First
(EDF) scheduling policy

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gun

Virtual Core Model - Response-
Time Constraint -

I
frequency . : ': - Where is the boundary
—— ARy
The taskon |

physical core ! F,

1 time
| E I:
Tene : I
frf%ﬂ - Be-
The task on |___,r l l L . E]
. | .
virtual core L p time

e

o Glven a tolerable response time delay o, the delay of the
response time on the virtual core can be no more than o if

o

T< 9 .
- FF, & C2RT

) R-0-)+oa
p P

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Worst-Case Execution Time
(WCET) Analysis

Recall the Rate Monotonic Real-
Time Scheduling

» Astatic priority Is assigned to each task based on the inverse

of its period

o Atask with shorter period =» higher priority

o Atask with longer period =» lower priority

o For example:

N — How can we get the

- P, has its period 50 angrExecution time 20
- P, has its period 100 a EXECUTION TIME

=>»P, is assigned a higher priority than P,

Deadlines P4 P, P, P, P, P,

) ! ' ’

P11 |P2| 81 P21 1 P|1 |P21 Pﬂ P21 | |
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Execution Time of a Program

» The execution time of a program might not be a constant

Worst Case
Execution Time
(WCET)

Execution Time
Measurement

Possible
Execution Time

WCETSs are most essential assumptions for schedulability analysis
How to get the WCET of a program!?

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Factors for WCET Analysis

» Input parameters
o Algorithm parameters
> Problem size
» States of the system
o Cache configuration, cache replacement policies
o Pipeline configuration
o Speculations
» Interferences from the environment
o Scheduling policies
o Interrupts

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

WCET Analysis

» Can we always get the WCET of a program?

o Halting Problem tells us that we can not use an algorithm to decide
whether another algorithm m halts on a specific input x.

o Thus, WCET is also undecidable

» Most of industry’s best practice

o Measure it: determine WCET directly by running or simulating a set
of inputs.

o Exhaustive execution: by considering the set of all the possible
Inputs
» Another approach: compute an upper bound of the WCET
o It should be no less than the WCET
o It should be close to the WCET
o It can not always be tight

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Research of WCET Analysis

Worst Case
Execution Ti
(WCET)

gxecution Time
easurement

Possible
Execution Time

CET
Upper

WCET
Upper
Bound

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Challenges of Analyzing WCET

» Execution time e(i) of machine instruction i
o e(1) 1S not a constant
> The (architectural) execution state s should be considered
o Thus, e(i) is within the following range
min{e(l, s)|s € S} <e(l) <max{e(l, s)|s € S},
where S is the set of all states
» Using max{e(l, s)|s € S} as the upper bound of WCET

o It is safe
o But It might be not tight

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Timing Accidents and Penalties

» Timing Accident: cause for an increase of the execution
time of an instruction

» Timing Penalty: the associated increase

» Types of timing accidents
> Cache misses

TLB misses

Page faults

Pipeline stalls

Branch prediction errors

Bus collisions

(0]

O

(0]

O

(0]

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Overall Structure of WCET Analisis

Executable Binary Program

\ 4

Control—Flow—Graph Reconstruction

v

Loop Analysis and Unfolding

Loop Bounds

Static Analysis

\ 4

Micro—Architecture

Value Analyzer

Path A

nalysis

l

Cache/Pipeline
Analyzer

|_ Abstraction
ILP—Generator
—— || ey
Timing Information
r ILP—Solver
v
WCET Visualization Evaluation
and Analysis Results

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information En

Basic Blocks

» Beginning of Basic Blocks

o The first instruction

o The targets of un/conditional jumps
» Ending of Basic Block

> The basic block consists of the block beginning and runs until
the next block beginning (exclusive) or until the program ends

Block 2

—p

A

AlLarge Block 1 {
Program

Block 4

A

Block 3
l }
Block 5

Block 6

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enc

= f 4% 28

Value Analysis

» Motivation

> Provide access information to data-cache/pipeline analysis
o Detect infeasible paths
> Derive loop bounds

» Method

o Calculate intervals at all program points

o Consider addresses, register contents, local/global variables
» Abstract Interpretation

o Perform the program’s computation using value descriptions or
abstract values in place of the concrete values

© All Rights Reserved, Prof. Che-Wei Chang,

=3 A'i 4y 29

Department of Computer Science and Information En

Abstract Interpretation

» Abstract Domain
> Replace an integer/double operator by using intervals
> For example, L = [3,5] stands for L is a value between 3 and 5
» Abstract Transfer
o For example, operator +: [3, 5] + [2, 6] =[5, 11]
o For example, operator —: [3, 5] — [2, 6] = [-3, 3]
» Join Combining
> For example, [a, b] join [c, d] becomes [min{a, c}, max{b, d}]
o That is, [3, 5] join [2, 4] becomes [2, 5]

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

Cache Analysis

» How does it work:
> Analyzed dynamically
o Managed by replacement policies

@ableenhigs

Access [P

Memory

» Why does it work:
o Spatial locality
o Temporal locality

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

A Case Study with LRU:
Join Manhagement

Execution 1
E:(c;gcruatlrir:J e } S
Execution 2
{a} {c} Cache state before {}
0 |_| {e} Execution 3 {
(c.f] (a} ——> (a.c)
{d} {d} {d}

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Pipelines

» An Instruction execution consists of several sequential

phases, e.g.,
o Fetch
o Decode
o Execute Inst 1 Inst 2 Inst 3 Inst 4
] Fetch
> Write Back Decode Fetch
Execute Decode Fetch
Write Back Execute Decode Fetch
Write Back Execute Decode
Write Back Execute
Write Back

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering,

Hardware Features of Pipelines

» Instruction execution is split into several stages

» Several instructions can be executed in parallel

» Some pipelines can start more than one instruction per
cycle: VLIW, Superscalar

» Some CPUs can execute instructions out-of-order

» Practical Problems: Hazards and cache misses
o Data Hazards: Operands not yet available (Data Dependences)
o Control Hazards: Conditional branch
> Resource Hazards: Consecutive instructions use same resource
o Instruction-Cache Hazards: Instruction fetch causes cache miss

© All Rights Reserved, Prof. Che-Wei Chang,

s giiir a

Department of Computer Science and Information

WCET Analysis Tools (1/2)

» aiT WCET Analyzers

Computed Worst Case for Entry ‘main- 68 182 us

Cache Statistics
- L1 Unified Cache: max 2074 hits. max 92 misses l

i i

" 0 1.487 ‘- v "

| I | - = —
@ o .

Procd: § 388 s 3 I b g
eem— A . = -
| 1 - e i
H B W R N T, gy 4 AT W
amlitie: & 2T
] T o v
Taivenchle E=3 et B - Sold (mrrstion Ol atte
' l [l Commt (plem - Cpclen
- : -
£33 matloc s 1 493 w Steepy_x o e Procs- 3 Y 1 o emvm Lm
= — — — — Pt) M Lmm UM
Wie 11 - - i am 3

-
B
o
on
e
-

GIUIoI0)

» It 1s not free
» https://www.absint.com/ait/

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gun

https://www.absint.com/ait/

WCET Analysis Tools (1/2)

» Chronos

Set Gee Location (=] ——
v 3 Seurce [11]; PORO
Look In: ‘rj Test |v| @E O weertenc g
= '|
benchmarks —
L e I,
e
CJest R
[est-v1
] gui
CJ Ip_solve
] simplesim-3.0
] simplesim-3.0-v1
File Mame: |,fhnmejliangwn,fTest,fbin |
] IDRD i D
Files of Type: |All Files x| [
| Qpen || Cancel ‘

» It is free and open-source for academic
» But It is not stable
» http://www.comp.nus.edu.sg/~rpembed/chronos/

© All Rights Reserved, Prof. Che-Wei Chang, o
Department of Computer Science and Information Engineering, Chang

http://www.comp.nus.edu.sg/~rpembed/chronos/

Multi-Core Scheduling

Scheduling on Multiple Cores (1/2)

» Real-Time Multi-Core Scheduling Algorithms ?

o Global scheduling algorithms 2
o Partitioned scheduling algorithms 3

Partitioned
Scheduling

Scheduling

Global
Jobs Jobs

A single job queue Job queues

Processors

Processors

[1] Robert I. Davis and Alan Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems,” in ACM Computing Surveys, 2011.
[2] Hennadiy Leontyev and James H. Anderson, “Generalized Tardiness Bounds for Global Multiprocessor Scheduling,” in RTSS, 2007.
p— -

i 38

it
=

[3] Sanjoy Baruah and Nathan Fisher, “The Partitioned Multiprocessor Scheduling of Sporadic Task Systems,” in RTSS, 2005.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

Scheduling on Multiple Cores (2/2)

» Settings:
o 2 cores
o 2 tasks with execution time 10 arrive at time O
o 1 task with execution time 19 arrives at time 1

» Global Scheduling
o Core 1. NN

o Core 2:
» Partitioned Scheduling

o Corel: I
- Core 2. 1IN

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Different Fitting Approaches for
Partitioned Scheduling

» First-Fit: choose the one with the smallest index

» Last-Fit: choose the one with the largest index

» Best-Fit: choose the one with the maximal utilization
» Worst-Fit: choose the one with the minimal utilization

Assigning a task with utilization equal to 0.1

First Best Worst _ast
Fit Fit Fit Fit

/ / / /

Corel Core 2

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Two Approaches for Using Multiple

Cores | N
» Data Partition » Functional Partition
/7 N\ o
core 1l core 1l

|

. /
Flexibility _
«Scalability *Hardware/software co-design
«|_oad-balance Parallelism in sequential program

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

Studies of Multi-Core Scheduling
with Heterogeneous Memory

System Models

» Hardware Model
> Homogeneous multiple processors
> Two types of shared memory

modules with different access latencies Globally Shared
.. Slow Memory
o Limited space of each memory module

Local Memory

» Task Model

o An implicit-deadline sporadic task set is considered

o Each implicit-deadline sporadic task is characterized with
- The relative deadline

+ The minimum inter-arrival time
- The worst case execution time

> The worst case execution time depends on the memory allocation

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Problem Definition

» The Goal of Our Algorithm

o Minimize the maximum utilization
of processors of a system

If the maximum utilization is no more than
100%, a feasible solution is derived by
earliest-deadline-first scheduling scheme?

» The Constraints of the Problem
o All tasks meet their deadlines

> The required amount of blocks of each memory pool does not
exceed the size of the pool

[1] C. L. Liu and James W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,” in Journal of the ACM, 1973.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information E

An Overview of the Proposed
Solution

» Offline Profiling of the Worst Case Execution Time
» Static Memory Allocation and Task Partition

WCET-Aware
C Compiler

1
-
Greedy Analyzer for

ANSI-C
Sources
_ J

Special Cases

aiT WCET
Analyzer

r N
Dynamic Programming

[Memory Allocator for General Cases
_ J

1
e) I
Worst-Fit Memory Allocation
. Task Assigner) and Task Partition

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

A Two-Phase Algorithm

» The First Phase: Memory Allocation

> Produce the optimal solution of a memory allocation sub-
problem

o Derive the lower bound of the whole problem

» The Second Phase: Task Partition
o Sort all tasks in a non-increasing order of their utilizations

o Tasks are then sequentially assigned to the processor with the
currently lowest utilization

© All Rights Reserved, Prof. Che-Wei Chang,

46

Department of Computer Science and Information Engi

A Lower Bound

» Lemma 1: if the memoryv allocation is already given,

maxgmax, ET{u

Zt eT l\
e

IS a lower bound

> T is the task sef, and M is the number of Processors
o u; IS the utilization of task t; with the given memory allocation

The maximum utilization
amount of all tasks

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

The average utilization
of all processors

Memory Allocation—
The First Phase

1) Lettask t; be the task which needs the highest utilization in the optimal
memory allocation result, and it consumes ¢ blocks of the fast memory pool

2) Allocate exactly ¢ blocks of the fast memory for t;

3) Reduce the utilization of other tasks to make sure that ¢; has the highest
utilization

2y Reduce the average utilization as much as possible
5y Iteratively try all the possible combinations of t; and ¢

Choose as Critical Task

Critical Utilization

Utilization

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineer

Task Partition—

The Second Phase

1) Based on the result of the proposed memory allocation
algorithm, sort all tasks in a non-increasing order of
their utilization

2) Sequentially assign tasks to the processor with the
currently lowest utilization

« |t takes only a polynomial time complexity

|t hasatight (2 - Miﬂ)-approximation bound for

the minimization problem, where M is the
number of processors

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

System Model

» An Island-Based Multi-Core Platform

> A global memory pool and multiple islands

> A policy to turn on/off islands to manage resources
» The Purpose of Our Designs

o Meet real-time requirements
o Minimize the number of islands

How many islands
should we use?

Private Memory Private Memory

Private Memory

: A system
Globally Shared Memory Modules

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Problem Definition-
Real-Time Tasks

» Goal:
o Minimize the number of required islands

» Constraints:
o All implicit-deadline sporadic tasks meet their deadlines
> No memory space limitation is violated
» Task Model- Implicit-Deadline Sporadic Tasks:
o Arelative deadline
o The minimum inter-arrival time
o The worst case execution time

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Enginee

Problem Definition-
Hardware Platforms

» Hardware Model- Island-Based Multi-Core Platforms:
o Cores in an island share a local memory pool
> An island consists of multiple homogeneous cores
> A system consists of multiple islands
> A system consists of a large global memory pool

An Island-Based Multi-Core System
Island Island Island
Core Core Core Core Core Core
Core Core Core Core Core Core
Local Memory Local Memory Local Memory
Global Memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Proposed Algorithms

uJ Acgatifimesaskiagk configuration
Minimize the value of -+ + l_&‘——\

_ M
< for each task [- } l
o Bl

2. _Sort aII_tasks In a non- TEQUITED Size
Increasing order by the
required number of the local
memory blocks

3. Partition all tasks to islands

by the first fit strategy
4. Assign tasks onto cores by O andl N 0 iddand2)
the first fit strat(_egy _ Core 1 Core 2 Core 1 Core 2
I =]
assignment for a task Local Memor Local Memor
N J Y

© All Rights Reserved, Prof. Che-Wei Chang,

iliitzs s3

Department of Computer Science and Information Engi

Analysis of the Algorithm

» Theorem 3: the properties of the algorithm

> The time complexity is O(|T|? + y), where |T| is the number
of task, and vy Is the number of the candidates of memory
allocation

> The derived result (number of the required islands) is bound by
A0PT + 2, where OPT is the result of the optimal solution
» The value of the proposed algorithm
o Provide the lower bound for an IBRT problem instance

> Provide a bounded solution for island-based multi-core system
synthesis

© All Rights Reserved, Prof. Che-Wei Chang, Tm £ : £t 43 5

Department of Computer Science and Information

Performance Evaluation (1/2)

» 82 real-life benchmarks from MRTC, MediaBench, UPDSP,
NetBench, and DSPstone

» The worst-case execution time of each task Is generated by aiT
which is based on Infineon TriCore TC1797

» The number of cores in an island Is 4

I 1 I I 1 1
T 0% 20 so 0] 10% 277 1% [D00] 20 BEEE T

1.2 F .

1+
0.8

0.6 |

04 | '

02} '_ %
0

© All Rights Reserved, Prof. Che-Wei Chang,

Normalized number of used islands

Department of Computer Science and Information Engi

Performance Evaluation (2/2)

» Include the 82 benchmarks for the two experiments

» Vary the number of cores per island for the left experimental
results

» Vary the size of the local memory for the right experimental
results

—_
]

" First-Fit -©-

Baséline -@-

40 ¢ 5%-MCI - 1 1 MCIF-Radom -
2 20%-MCI -A- S 10r 1
':_'—J 30 1 E 9 O ﬁﬁﬁﬁﬁﬁﬁﬁ _@
R = T —C—C—C T
9 25| - o.,
o 2 8r O
220 E A "'-G).,L_@
S ol S 7t . U O D@
gP 3 A, oo
=) = B TACNN
| Z sl B DA

% 1T 2 3 4 5 6 7 8 9 4

_ 0 2 4 6 8 10 12 14 16 18 20 22
Number of cores per island Size of the fast local memory (%)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

Studies of Heterogeneous
Computing Resources

Image Registration

» LDDMM-DSI conducts image registration while
preserving the topology conservation and invertibility

» However, the precision of the outcome is at the
expense of the execution time

» Why we need image registration?

Patient Brain

B [
~ n B 4

™
.

Il

Target image I,

Mapping
ﬁ

_

Inverse Function

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

.

dABLdENESN
BN PEN
SeENEIRSA
|
LR

l

Template image I;

Standard Brain

Diagnosis

LDDMM-DSI

» LDDMM-DSI

o A large deformation diffeomorphic metric mapping solution
for diffusion spectrum imaging datasets

» Motivation
> Medical Image Center
- Huge amount of medical images are received for processing
- How to exploit the throughput becomes important
o Instant checking of many different possible diseases
- Different weighted MRI images target different soft tissues

- Thus, different registration processes will be required to conduct
thorough checking

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information

Input/Output Data

% =% ~§ -4 ~8 =8 8 28

» The Input data contain el EFEFEE
both i-space (3D) and g- T r LI LI -

space (3D) %@@@@@%%

» The output data contain @ :
mainly the velocity files,
which is around 2 GB In
total

» The intermediate data
are larger than 30 GB /

© All Rights Reserved, Prof. Che-Wei C

Department of Computer Science and Inf

Trends of FPGA

Price dropping Logic Element count growing (exponentially!)
-] R
700 | i
600 4 ————————————— =g=Altera l

~-Xilinx
200 - i

0

B S e

Logic Elements {thousands of LEs)

Parallela board
(Xillinx FPGA)

99.0 USD

Source: http://www.xilinx.com/partners/90nm/ http://www.soccentral.com/results.asp?CatID=488&EntrylD=30730

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Cha

http://www.xilinx.com/partners/90nm/
http://www.soccentral.com/results.asp?CatID=488&EntryID=30730

Pipeline Designs of FPGA

» Acceleration Techniques on FPGA
o Customized Datapath
° Pipelined Execution

for(i = 0; i < 1024; i++)
{

y[i] = (a[i] + b[i] + c[i] + d[i] + e[i]+ f[i] + g[i] + h[i]) >> 3;
}

Fori=0..1023

RS

© All Rights Reserved, Prof. Che-Wei Chang,

CTe0ISIers

Department of Computer Science and Information Engineering, C

Challenges

300 ms 300 ms 300 ms
Stage 1 Stage 2 Stage N
Pipeline
Workload T 1;]32 ldle 300 ms 210 ms
i An unbalanced stage

» Since th put = 10 5

» To achieve optimal performance:
o Minimize idle time
o Trade area and bandwidth for performance
- Area and bandwidth are limited resource!

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineeri

FPGA Device Model

» Example: Nallatech PCIE Model:

385n (Altera Stratix V A7 - A: total area (gate count)
FPGA)

o Logic element count: 622000
o Memory bandwidth: 25 GB/s

* B: total memory bandwidth

A
21 Fpca

Memory
Access

© All Rights Reserved, Prof. Che-Wei Chang,
Department of Computer Science and Information Engi

Task Model

300 m: r— 300 ms

' Stage 1 ' StageZ

Pipeline '
Workload T 150
ms

300ms

» A pipeline workload T has N stages of execution
o The i-th stage t; has a degree D; of data parallelism

» When a hardware instance of t; is programmed on FPGA

o Consumes FPGA area: A;

o Requires memory bandwidth: B;
> Requires time T; to execute a single work-item

» Let d; be the number of programmed hardware instance of z;

o Required area: A;d;
o Required bandwidth:

> Execution time: @

Time to process a batch

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engi

Number of batches

Pipeline | Stage | | Stage | _, ., JSIETGN .. .| Stage
task | 71 T2 T N

Problem Definition

» METM (Maximum Execution Time Minimization
problem)

» Problem definition:
__—> Stage execution time

Minimize - :
—> Pipeline stage time

subject to

Area constraint

Bandwidth constraint
SV SEL

1 <d; SDi,VTi eET
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering

Dynamic Programming Solution

» DP-based algorithm: DP-METM (Maximum Execution

Time Minimization)

min time of first x-1 stages

exec time of x-th stage

I

(AN~
v(x,ab) = <max{v(x —1,a’,b")

Dx}
T -

k 0.0)

i 0<ac<i
" |0<b<B

Wherea'=a —A,-d,, b'=b — B, -d,andx > 1

» Algorithm DP-METM is optimal

,otherwise

» Complexity of DP-METM is: O(|T| - A% - B)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Eng

Implementation Remarks

» Input parameter measurement
A;, B; can be obtain from the compiler output
o T; need to be measured manually
» Runtime library support
o Dispatch stage workload
o Exchange data between stages

FPGA Device Memory

» Example platform: Nallatech PCIE 385n [1] FPGA card
o Using OpenCL toolchain

[1] N. Coporation, “Nallatech 385 Product Brief,” Feb 2014.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engine

