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 Dynamic Voltage and Frequency Scaling (DVFS)
◦ Scale down the voltage and/or frequency to reduce the processor 

power consumption

◦ An example: reducing 17% of the energy consumption for H.264 
decoding over TI DaVince DM6446

 Dynamic Power Management (DPM)
◦ Change to an energy-efficient state to reduce the power 

consumption of peripheral devices

◦ An example: reducing 15% of the energy consumption for the 
browser over Android Galaxy Tab

4
© All Rights Reserved, Prof. Che-Wei Chang, 

Department of Computer Science and Information Engineering, Chang Gung University

Power 

Consumption
1625mW 2023mW 3166mW

Android 

Galaxy Tab



 The Observation: It is energy-efficient to scale down the processor 

frequency dynamically to fit current workloads

 The Approach: It keeps a window or buffer to estimate the workload
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 Energy-Efficient ARM-DSP Platforms for H.264 

Decoding

◦ Analyze the workload variance  of multimedia jobs

◦ Take real platforms for an ARM+DSP design

◦ Achieve more than 17% energy saving for the ITRI PAC SoC
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 A task consists of a sequence of jobs
 Jobs arrive by a period: P time units
 The workload of future job can be predicted based on the log
 Because of the buffer size limitation, the number of pending jobs 

at any time point is bounded by a fixed integer B
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where 

Cef is the effective switch capacitance

Vt is the threshold voltage

Vdd is the supply voltage

k is a hardware-design-specific constant

Dynamic power 

consumption function P(s)

mins maxssleep mode



 An Energy-Efficient Multimedia Application

Make the frequency as low as possible

Meet all performance constraints

Find the critical (most demanding) interval by calculating 

the maximum required speed in all intervals
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 Platform: Texas Instruments DaVinci DVEVM (The 

Digital Video Evaluation Module)
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Speed Mode s1 s2 s3 s4 s5 s6 s7 s8 s9

Frequency (MHz) 594 567 540 513 486 459 432 405 0
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2D Animation 3D Animation Action News Conf.

Number of 

frames
17985 19182 19182 1751

FPS 29.97 29.97 23.98 23.98

Bit-rate 

(kbps)
754.99 1237.58 1798.87 631.27

PSNR 42.44 41.85 40.04 42.49

Resolution 720×480 720×480 720×480 720×480
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 A Virtual Core

◦ A sporadic server in hypervisor’s view

◦ An individual core for user applications

 Energy-Efficient Virtualization*

◦ Approximation bound analysis

◦ A real implementation on ARM 9 with L4 

microkernel with DVFS supports 
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Cores," in ECRTS. 6-9, 2010.
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 The significant growing on the number of cores per system

 The consideration of  the DVS functionality in virtual cores
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 Virtual core model 

 Hypervisor 
functionalities

 Minimize the energy 
consumption

 Manage virtual cores with 
virtual core functions

 Guarantee the needs of 
each virtual cores

Hypervisor

Virtual Core 1

Guest OS 

Virtual Core 2 Virtual Core n

Guest OS 

Task Task Task Task Task Task

Physical Core Adjust frequency
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Adjust frequency
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 Given a set of real-time tasks {τ1, τ2, …, τn}, the timing constraints of 
these tasks can be met with a virtual core by setting 

if the real-time tasks are scheduled under the Earliest-Deadline-First 
(EDF) scheduling policy
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◦ Given a tolerable response time delay σ, the delay of the 

response time on the virtual core can be no more than σ if 
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 A static priority is assigned to each task based on the inverse 
of its period
◦ A task with shorter period  higher priority

◦ A task with longer period  lower priority

◦ For example: 

 P1 has its period 50 and execution time 20

 P2 has its period 100 and execution time 37

P1 is assigned a higher priority than P2

How can we get the 

EXECUTION TIME



 The execution time of a program might not be a constant
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Possible 

Execution Time

Execution Time

Measurement

Worst Case 

Execution Time

(WCET)

WCETs are most essential assumptions for schedulability analysis 

How to get the WCET of a program!?



 Input parameters 

◦ Algorithm parameters 

◦ Problem size

 States of the system

◦ Cache configuration, cache replacement policies 

◦ Pipeline configuration

◦ Speculations

 Interferences from the environment 

◦ Scheduling policies

◦ Interrupts  
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 Can we always get the WCET of a program?
◦ Halting Problem tells us that we can not use an algorithm to decide 

whether another algorithm m halts on a specific input x. 

◦ Thus, WCET is also undecidable 

 Most of industry’s best practice 
◦ Measure it: determine WCET directly by running or simulating a set 

of inputs. 

◦ Exhaustive execution: by considering the set of all the possible 
inputs 

 Another approach: compute an upper bound of the WCET 
◦ It should be no less than the WCET

◦ It should be close to the WCET

◦ It can not always be tight
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 Execution time e(i) of machine instruction i

◦ e(i) is not a constant 

◦ The (architectural) execution state s should be considered

◦ Thus, e(i) is within the following range 

min{e(i, s)|s ∈ S} ≤ e(i) ≤ max{e(i, s)|s ∈ S}, 

where S is the set of all states

 Using max{e(i, s)|s ∈ S} as the upper bound of WCET

◦ It is safe 

◦ But it might be not tight 
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 Timing Accident: cause for an increase of the execution 

time of an instruction 

 Timing Penalty: the associated increase 

 Types of timing accidents 

◦ Cache misses

◦ TLB misses 

◦ Page faults

◦ Pipeline stalls

◦ Branch prediction errors

◦ Bus collisions 
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Executable Binary Program

Control−Flow−Graph Reconstruction 

Loop Analysis and Unfolding 

Static Analysis Path Analysis

Value Analyzer

Cache/Pipeline 

Analyzer

ILP−Generator 

ILP−Solver 

Evaluation 

Micro−Architecture

Abstraction

Timing Information 

WCET Visualization

and Analysis Results

Loop Bounds



 Beginning of Basic Blocks

◦ The first instruction 

◦ The targets of un/conditional jumps

 Ending of Basic Block

◦ The basic block consists of the block beginning and runs until 

the next block beginning (exclusive) or until the program ends 
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 Motivation 

◦ Provide access information to data-cache/pipeline analysis

◦ Detect infeasible paths

◦ Derive loop bounds 

 Method 

◦ Calculate intervals at all program points

◦ Consider addresses, register contents, local/global variables

 Abstract Interpretation 

◦ Perform the program’s computation using value descriptions or 

abstract values in place of the concrete values 
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 Abstract Domain

◦ Replace an integer/double operator by using intervals 

◦ For example, L = [3,5] stands for L is a value between 3 and 5 

 Abstract Transfer

◦ For example, operator +: [3, 5] + [2, 6] = [5, 11] 

◦ For example, operator −: [3, 5] − [2, 6] = [-3, 3]

 Join Combining

◦ For example, [a, b] join [c, d] becomes [min{a, c}, max{b, d}] 

◦ That is, [3, 5] join [2, 4] becomes [2, 5] 
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 How does it work:

◦ Analyzed dynamically

◦ Managed by replacement policies

 Why does it work:

◦ Spatial locality

◦ Temporal locality
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Execution 1

Execution 2

Execution 3
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Execution
… … … …

Cache state before 

Execution 3



 An instruction execution consists of several sequential 

phases, e.g., 

◦ Fetch 

◦ Decode 

◦ Execute 

◦ Write Back 
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 Instruction execution is split into several stages 

 Several instructions can be executed in parallel 

 Some pipelines can start more than one instruction per 

cycle: VLIW, Superscalar 

 Some CPUs can execute instructions out-of-order 

 Practical Problems: Hazards and cache misses 

◦ Data Hazards: Operands not yet available (Data Dependences) 

◦ Control Hazards: Conditional branch 

◦ Resource Hazards: Consecutive instructions use same resource 

◦ Instruction-Cache Hazards: Instruction fetch causes cache miss 
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 aiT WCET Analyzers

 It is not free

 https://www.absint.com/ait/
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 Chronos

 It is free and open-source for academic 

 But it is not stable 

 http://www.comp.nus.edu.sg/~rpembed/chronos/
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 Real-Time Multi-Core Scheduling Algorithms 1

◦ Global scheduling algorithms 2

◦ Partitioned scheduling algorithms 3

Jobs

A single job queue

Processors

Jobs

Job queues

Processors

Global 

Scheduling 

Partitioned 

Scheduling 

[1] Robert I. Davis and Alan Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems,” in ACM Computing Surveys, 2011. 

[2] Hennadiy Leontyev and James H. Anderson, “Generalized Tardiness Bounds for Global Multiprocessor Scheduling,” in RTSS, 2007.

[3] Sanjoy Baruah and Nathan Fisher, “The Partitioned Multiprocessor Scheduling of Sporadic Task Systems,” in RTSS, 2005.



 Settings:

◦ 2 cores

◦ 2 tasks with execution time 10 arrive at time 0 

◦ 1 task with execution time 19 arrives at time 1

 Global Scheduling

◦ Core 1: 

◦ Core 2:

 Partitioned Scheduling

◦ Core 1:

◦ Core 2:
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 First-Fit: choose the one with the smallest index 

 Last-Fit: choose the one with the largest index 

 Best-Fit: choose the one with the maximal utilization

 Worst-Fit: choose the one with the minimal utilization

Assigning a task with utilization equal to 0.1 
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core 2 

core 4 

 Functional Partition Data Partition

core 1 core 2 

core 3 core 4 

core 3 

core 1

•Flexibility

•Scalability

•Load-balance

•Hardware/software co-design

•Parallelism in sequential program
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 Hardware Model

◦ Homogeneous multiple processors

◦ Two types of shared memory

modules with different access latencies

◦ Limited space of each memory module 

 Task Model

◦ An implicit-deadline sporadic task set is considered

◦ Each implicit-deadline sporadic task is characterized with 

 The relative deadline

 The minimum inter-arrival time 

 The worst case execution time

◦ The worst case execution time depends on the memory allocation

Globally Shared 

Slow  Memory

Local Memory
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 The Goal of Our Algorithm

◦ Minimize the maximum utilization 

of processors of a system

 The Constraints of the Problem

◦ All tasks meet their deadlines

◦ The required amount of blocks of each memory pool does not 

exceed the size of the pool   

If the maximum utilization is no more than 

100%, a feasible solution is derived by 

earliest-deadline-first scheduling scheme1

[1] C. L. Liu and James W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,” in Journal of the ACM, 1973.



 Offline Profiling of the Worst Case Execution Time

 Static Memory Allocation and Task Partition
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C Compiler

Memory Allocator

Worst-Fit

Task Assigner
Memory Allocation
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Special Cases

Dynamic Programming

for General Cases

aiT WCET 

Analyzer



 The First Phase: Memory Allocation

◦ Produce the optimal solution of a memory allocation sub-

problem

◦ Derive the lower bound of the whole problem

 The Second Phase: Task Partition

◦ Sort all tasks in a non-increasing order of their utilizations

◦ Tasks are then sequentially assigned to the processor with the 

currently lowest utilization
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 Lemma 1: if the memory allocation is already given, 

𝑚𝑎𝑥 𝑚𝑎𝑥𝑡𝑖∈𝐓 𝑢𝑖 ,
σ𝑡𝑖∈𝐓

𝑢𝑖

𝑀
is a lower bound

◦ 𝐓 is the task set, and 𝑀 is the number of processors

◦ 𝑢𝑖 is the utilization of task 𝑡𝑖 with the given memory allocation
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The maximum utilization 

amount of all tasks

The average utilization 

of all processors
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1) Let task 𝑡𝑖 be the task which needs the highest utilization in the optimal 
memory allocation result, and it consumes l blocks of the fast memory pool

2) Allocate exactly l blocks of the fast memory for 𝑡𝑖

3) Reduce the utilization of other tasks to make sure that 𝑡𝑖 has the highest 

utilization

4) Reduce the average utilization as much as possible

5) Iteratively try all the possible combinations of 𝑡𝑖 and l

Choose as Critical Task

Critical Utilization
Average Utilization

Utilization
Tasks
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1) Based on the result of the proposed memory allocation 

algorithm, sort all tasks in a non-increasing order of 

their utilization

2) Sequentially assign tasks to the processor with the 

currently lowest utilization

• It takes only a polynomial time complexity

• It has a tight (2 -
2

𝑀+1
)-approximation bound for 

the minimization problem, where 𝑀 is the 

number of processors
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 An Island-Based Multi-Core Platform

◦ A global memory pool and multiple islands

◦ A policy to turn on/off islands to manage resources

 The Purpose of Our Designs

◦ Meet real-time requirements 

◦ Minimize the number of islands

: A system

: An island
Globally Shared Memory Modules

Private Memory Private Memory

…
Private Memory

How many islands 

should we use?



 Goal:

◦ Minimize the number of required islands 

 Constraints:

◦ All implicit-deadline sporadic tasks meet their deadlines

◦ No memory space limitation is violated

 Task Model– Implicit-Deadline Sporadic Tasks:

◦ A relative deadline

◦ The minimum inter-arrival time 

◦ The worst case execution time
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 Hardware Model– Island-Based Multi-Core Platforms:

◦ Cores in an island share a local memory pool

◦ An island consists of multiple homogeneous cores

◦ A system consists of multiple islands 

◦ A system consists of a large global memory pool
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1. Minimize the value of 
𝑈𝑖
𝑗

𝑀
+

𝑗

𝐵𝐿
for each task

2. Sort all tasks in a non-

increasing order by the 

required number of the local 

memory blocks

3. Partition all tasks to islands 

by the first fit strategy 

4. Assign tasks onto cores by 

the first fit strategy

5. Allocate a new island if 

there is no feasible 

assignment for a task
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 Theorem 3: the properties of the algorithm

◦ The time complexity is O( 𝐓 2 + γ), where 𝐓 is the number 

of task, and γ is the number of the candidates of memory 

allocation

◦ The derived result (number of the required islands) is bound by 

4𝑂𝑃𝑇 + 2, where 𝑂𝑃𝑇 is the result of the optimal solution

 The value of the proposed algorithm

◦ Provide the lower bound for an IBRT problem instance

◦ Provide a bounded solution for island-based multi-core system 

synthesis
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 82 real-life benchmarks from MRTC, MediaBench, UPDSP, 

NetBench, and DSPstone

 The worst-case execution time of each task is generated by aiT

which is based on Infineon TriCore TC1797

 The number of cores in an island is 4
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 Include the 82 benchmarks for the two experiments

 Vary the number of cores per island for the left experimental 

results

 Vary the size of the local memory for the right experimental 

results
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 LDDMM-DSI conducts image registration while 

preserving the topology conservation and invertibility

 However, the precision of the outcome is at the 

expense of the execution time

 Why we need image registration?
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Target image 𝐼0 Template image 𝐼1

Standard BrainPatient Brain Mapping

Inverse Function

Diagnosis



 LDDMM-DSI

◦ A large deformation diffeomorphic metric mapping solution 

for diffusion spectrum imaging datasets

 Motivation

◦ Medical Image Center

 Huge amount of medical images are received for processing

 How to exploit the throughput becomes important

◦ Instant checking of many different possible diseases

 Different weighted MRI images target different soft tissues

 Thus, different registration processes will be required to conduct  

thorough checking 
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 The input data contain 

both i-space (3D) and q-

space (3D)

 The output data contain 

mainly the velocity files, 

which is around 2 GB in 

total

 The intermediate data 

are larger than 30 GB
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Source: http://www.xilinx.com/partners/90nm/ http://www.soccentral.com/results.asp?CatID=488&EntryID=30730

Price dropping Logic Element count growing (exponentially!)

99.0 USD

Parallela board
(Xillinx FPGA)
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 Acceleration Techniques on FPGA

◦ Customized Datapath

◦ Pipelined Execution
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 Since throughput = 
1

longest stage time

 To achieve optimal performance:
◦ Minimize idle time

◦ Trade area and bandwidth for performance

 Area and bandwidth are limited resource!

300 ms

Stage 1 Stage 2 Stage N

150 

ms
210 ms

Pipeline

Workload T Idle

300 ms 300 ms 300 ms

An unbalanced stage
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 Example: Nallatech PCIE 
385n (Altera Stratix V A7 
FPGA)
◦ Logic element count: 622000

◦ Memory bandwidth: 25 GB/s

FPGA

DRAM

Memory

Access

PCIe bus

• Model:

• A: total area (gate count)

• B: total memory bandwidth
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 A pipeline workload T has N stages of execution

◦ The i-th stage 𝜏𝑖 has a degree 𝐷𝑖 of data parallelism

 When a hardware instance of 𝜏𝑖 is programmed on FPGA

◦ Consumes FPGA area: 𝐴𝑖
◦ Requires memory bandwidth: 𝐵𝑖
◦ Requires time 𝑇𝑖 to execute a single work-item

 Let 𝑑𝑖 be the number of programmed hardware instance of 𝜏𝑖
◦ Required area:  𝐴𝑖𝑑𝑖
◦ Required bandwidth: 𝐵𝑖𝑑𝑖

◦ Execution time: Ti
𝐷𝑖

𝑑𝑖

Number of batches
Time to process a batch

300ms

Stage 1 Stage 2 Stage N

150 

ms
210ms

Pipeline

Workload T
Idle

300 ms 300 ms 300 ms
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 METM (Maximum Execution Time Minimization 

problem)

 Problem definition:

Minimize

max
∀𝜏𝑖∈𝐓

Ti
𝐷𝑖
𝑑𝑖

subject to



∀𝜏𝑖∈𝐓

𝐴𝑖 ⋅ 𝑑𝑖 ≤ 𝐴



∀𝜏𝑖∈𝐓

𝐵𝑖 ⋅ 𝑑𝑖 ≤ 𝐵

1 ≤ 𝑑𝑖 ≤ 𝐷𝑖 , ∀𝜏𝑖 ∈ 𝐓

Area constraint

Bandwidth constraint

Stage execution time

Pipeline stage time
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 DP-based algorithm: DP-METM (Maximum Execution 

Time Minimization)

𝑣 𝑥, 𝑎, 𝑏 =
min

1≤𝑑𝑥≤𝐷𝑥
max 𝑣 𝑥 − 1, 𝑎′, 𝑏′ , 𝑇𝑥

𝐷𝑥
𝑑𝑥

, if ቊ
0 ≤ 𝑎 ≤ 𝐴
0 ≤ 𝑏 ≤ 𝐵

∞ , otherwise

Where 𝑎′ = 𝑎 − 𝐴𝑥 ⋅ 𝑑𝑥 , 𝑏
′ = 𝑏 − 𝐵𝑥 ⋅ 𝑑𝑥 and 𝑥 ≥ 1

 Algorithm DP-METM is optimal

 Complexity of DP-METM is: O( 𝐓 ⋅ 𝐴2 ⋅ 𝐵)

min time of first x-1 stages exec time of x-th stage
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 Input parameter measurement

◦ 𝐴𝑖 , 𝐵𝑖 can be obtain from the compiler output

◦ 𝑇𝑖 need to be measured manually

 Runtime library support

◦ Dispatch stage workload

◦ Exchange data between stages

 Example platform: Nallatech PCIE 385n [1] FPGA card

◦ Using OpenCL toolchain
[1] N. Coporation, “Nallatech 385 Product Brief,” Feb 2014.

𝜏2𝜏1 𝜏𝑁

Buffer

Buffer

Buffer

Buffer

Swap
Buffer

Buffer

Swap

Host 

Memory Host 

Memory

FPGA Device Memory
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