
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

 Dynamic Voltage and Frequency Scaling (DVFS)
◦ Scale down the voltage and/or frequency to reduce the processor

power consumption

◦ An example: reducing 17% of the energy consumption for H.264
decoding over TI DaVince DM6446

 Dynamic Power Management (DPM)
◦ Change to an energy-efficient state to reduce the power

consumption of peripheral devices

◦ An example: reducing 15% of the energy consumption for the
browser over Android Galaxy Tab

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Power

Consumption
1625mW 2023mW 3166mW

Android

Galaxy Tab

 The Observation: It is energy-efficient to scale down the processor

frequency dynamically to fit current workloads

 The Approach: It keeps a window or buffer to estimate the workload

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Fr
eq

u
e

n
cy

Task 1 Task 2

Fr
eq

u
e

n
cy

Task 1 Task 2

Time Time

C
P

U

U
ti

liz
at

io
n

Time

Short Window

Long Window

 Energy-Efficient ARM-DSP Platforms for H.264

Decoding

◦ Analyze the workload variance of multimedia jobs

◦ Take real platforms for an ARM+DSP design

◦ Achieve more than 17% energy saving for the ITRI PAC SoC

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Implementation on a
PC with Phenom II

Implementation on an
Android Phone

Implementation on
the PAC Soc

 A task consists of a sequence of jobs
 Jobs arrive by a period: P time units
 The workload of future job can be predicted based on the log
 Because of the buffer size limitation, the number of pending jobs

at any time point is bounded by a fixed integer B

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

D10

c1

c2 c3

c4 c5 c6
c7 c8

c9

c10

4P 10P

B = 6

w
o
rk

lo
a
d

time

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

3s04 s
2s

D
yn

a
m

ic
 P

o
w

er
 (

W
at

t)

Speed (Hz)
1s

dd

tdd

ddef

V

VV
ks

sVCsP

2

2

)(

,)(

where

Cef is the effective switch capacitance

Vt is the threshold voltage

Vdd is the supply voltage

k is a hardware-design-specific constant

Dynamic power

consumption function P(s)

mins maxssleep mode

 An Energy-Efficient Multimedia Application

Make the frequency as low as possible

Meet all performance constraints

Find the critical (most demanding) interval by calculating

the maximum required speed in all intervals

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

sp
ee

d

time

Current Sliding Window
2 4 6 8

 Platform: Texas Instruments DaVinci DVEVM (The

Digital Video Evaluation Module)

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Speed Mode s1 s2 s3 s4 s5 s6 s7 s8 s9

Frequency (MHz) 594 567 540 513 486 459 432 405 0

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

2D Animation 3D Animation Action News Conf.

Number of

frames
17985 19182 19182 1751

FPS 29.97 29.97 23.98 23.98

Bit-rate

(kbps)
754.99 1237.58 1798.87 631.27

PSNR 42.44 41.85 40.04 42.49

Resolution 720×480 720×480 720×480 720×480

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A Virtual Core

◦ A sporadic server in hypervisor’s view

◦ An individual core for user applications

 Energy-Efficient Virtualization*

◦ Approximation bound analysis

◦ A real implementation on ARM 9 with L4

microkernel with DVFS supports

14

0%

50%

100%

0
2

4
4

9
4

8
9

8
7

3
4

8
9

7
9

7
1

2
2

4
6

1
4

6
9

5

W
o

rklo
ad

 (%
)

Time (ms)

The Workloads
of Virtual Cores

Virtual
Core 1
Virtual
Core 2
Virtual
Core 3
Total

0.40
0.60
0.80

0
1

4
8

5
2

9
7

3
4

4
5

9
5

9
4

4
7

4
3

1
8

9
1

4
1

0
4

0
2

1
1

8
9

3
1

3
3

8
0

1
4

8
7

5

P
o

w
e

r (m
W

)

Time (ms)

The Power Trace
of the System

* Yu-Chia Lin, Chuan-Yue Yang, Che-Wei Chang, Yuan-Hao Chang, Tei-Wei Kuo and Chi-Sheng Shih, "Energy-Efficient Mapping Technique for Virtual

Cores," in ECRTS. 6-9, 2010.

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The significant growing on the number of cores per system

 The consideration of the DVS functionality in virtual cores

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Physical
Core 2

Hypervisor

Virtual
Core 1

Virtual
Core 2

Physical
Core 1

frequency = f frequency = f

frequency = ffrequency = f
Reduce

computing powerfrequency = 0.4ffrequency = 0.6f

Migration

Turn off

frequency = 0
Two virtual cores

share a physical core

0 6 10 16 20

Virtual Core 1 Virtual Core 2

t (ms)

A real-time task:
period: 5ms
execution time: 2ms

Miss
deadline

!!

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Virtual core model

 Hypervisor
functionalities

 Minimize the energy
consumption

 Manage virtual cores with
virtual core functions

 Guarantee the needs of
each virtual cores

Hypervisor

Virtual Core 1

Guest OS

Virtual Core 2 Virtual Core n

Guest OS

Task Task Task Task Task Task

Physical Core Adjust frequency

Policy

Adjust frequency

Users

Scheduler

Physical Core
1

Physical Core
2

Physical Core
m

17
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Given a set of real-time tasks {τ1, τ2, …, τn}, the timing constraints of
these tasks can be met with a virtual core by setting

if the real-time tasks are scheduled under the Earliest-Deadline-First
(EDF) scheduling policy

),,,gcd(21 npppT

n

i i

i T
p

c
C

1

&

Virtual
Core

τ:{pi, ci}

T=pi

C≧ci

Satisfy the timing
constraint

τ1:{p1, c1} τ2:{p2, c2} τ3:{p3, c3} τn:{pn, cn}

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

◦ Given a tolerable response time delay σ, the delay of the

response time on the virtual core can be no more than σ if

The task on

physical core

The task on

virtual core

pv FF
T

/1

TFC v &

p

v

p

d
F

F

F

C
TR)(

Where is the boundary

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A static priority is assigned to each task based on the inverse
of its period
◦ A task with shorter period higher priority

◦ A task with longer period lower priority

◦ For example:

 P1 has its period 50 and execution time 20

 P2 has its period 100 and execution time 37

P1 is assigned a higher priority than P2

How can we get the

EXECUTION TIME

 The execution time of a program might not be a constant

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Possible

Execution Time

Execution Time

Measurement

Worst Case

Execution Time

(WCET)

WCETs are most essential assumptions for schedulability analysis

How to get the WCET of a program!?

 Input parameters

◦ Algorithm parameters

◦ Problem size

 States of the system

◦ Cache configuration, cache replacement policies

◦ Pipeline configuration

◦ Speculations

 Interferences from the environment

◦ Scheduling policies

◦ Interrupts

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Can we always get the WCET of a program?
◦ Halting Problem tells us that we can not use an algorithm to decide

whether another algorithm m halts on a specific input x.

◦ Thus, WCET is also undecidable

 Most of industry’s best practice
◦ Measure it: determine WCET directly by running or simulating a set

of inputs.

◦ Exhaustive execution: by considering the set of all the possible
inputs

 Another approach: compute an upper bound of the WCET
◦ It should be no less than the WCET

◦ It should be close to the WCET

◦ It can not always be tight

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Possible

Execution Time

Execution Time

Measurement
Worst Case

Execution Time

(WCET)

WCET

Upper

Bound

WCET

Upper

Bound

 Execution time e(i) of machine instruction i

◦ e(i) is not a constant

◦ The (architectural) execution state s should be considered

◦ Thus, e(i) is within the following range

min{e(i, s)|s ∈ S} ≤ e(i) ≤ max{e(i, s)|s ∈ S},

where S is the set of all states

 Using max{e(i, s)|s ∈ S} as the upper bound of WCET

◦ It is safe

◦ But it might be not tight

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Timing Accident: cause for an increase of the execution

time of an instruction

 Timing Penalty: the associated increase

 Types of timing accidents

◦ Cache misses

◦ TLB misses

◦ Page faults

◦ Pipeline stalls

◦ Branch prediction errors

◦ Bus collisions

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Executable Binary Program

Control−Flow−Graph Reconstruction

Loop Analysis and Unfolding

Static Analysis Path Analysis

Value Analyzer

Cache/Pipeline

Analyzer

ILP−Generator

ILP−Solver

Evaluation

Micro−Architecture

Abstraction

Timing Information

WCET Visualization

and Analysis Results

Loop Bounds

 Beginning of Basic Blocks

◦ The first instruction

◦ The targets of un/conditional jumps

 Ending of Basic Block

◦ The basic block consists of the block beginning and runs until

the next block beginning (exclusive) or until the program ends

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

A Large

Program
Block 1

Block 2 Block 3

Block 4 Block 5

Block 6

 Motivation

◦ Provide access information to data-cache/pipeline analysis

◦ Detect infeasible paths

◦ Derive loop bounds

 Method

◦ Calculate intervals at all program points

◦ Consider addresses, register contents, local/global variables

 Abstract Interpretation

◦ Perform the program’s computation using value descriptions or

abstract values in place of the concrete values

29
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Abstract Domain

◦ Replace an integer/double operator by using intervals

◦ For example, L = [3,5] stands for L is a value between 3 and 5

 Abstract Transfer

◦ For example, operator +: [3, 5] + [2, 6] = [5, 11]

◦ For example, operator −: [3, 5] − [2, 6] = [-3, 3]

 Join Combining

◦ For example, [a, b] join [c, d] becomes [min{a, c}, max{b, d}]

◦ That is, [3, 5] join [2, 4] becomes [2, 5]

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 How does it work:

◦ Analyzed dynamically

◦ Managed by replacement policies

 Why does it work:

◦ Spatial locality

◦ Temporal locality

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

CPU Cache Memory

[a, b]Access

a

Cache hit

Access

k

Cache miss

Read k

[k, b]

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Execution 1

Execution 2

Execution 3
Program

Execution
… … … …

Cache state before

Execution 3

 An instruction execution consists of several sequential

phases, e.g.,

◦ Fetch

◦ Decode

◦ Execute

◦ Write Back

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Instruction execution is split into several stages

 Several instructions can be executed in parallel

 Some pipelines can start more than one instruction per

cycle: VLIW, Superscalar

 Some CPUs can execute instructions out-of-order

 Practical Problems: Hazards and cache misses

◦ Data Hazards: Operands not yet available (Data Dependences)

◦ Control Hazards: Conditional branch

◦ Resource Hazards: Consecutive instructions use same resource

◦ Instruction-Cache Hazards: Instruction fetch causes cache miss

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 aiT WCET Analyzers

 It is not free

 https://www.absint.com/ait/

35
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

https://www.absint.com/ait/

 Chronos

 It is free and open-source for academic

 But it is not stable

 http://www.comp.nus.edu.sg/~rpembed/chronos/

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

http://www.comp.nus.edu.sg/~rpembed/chronos/

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Real-Time Multi-Core Scheduling Algorithms 1

◦ Global scheduling algorithms 2

◦ Partitioned scheduling algorithms 3

Jobs

A single job queue

Processors

Jobs

Job queues

Processors

Global

Scheduling

Partitioned

Scheduling

[1] Robert I. Davis and Alan Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems,” in ACM Computing Surveys, 2011.

[2] Hennadiy Leontyev and James H. Anderson, “Generalized Tardiness Bounds for Global Multiprocessor Scheduling,” in RTSS, 2007.

[3] Sanjoy Baruah and Nathan Fisher, “The Partitioned Multiprocessor Scheduling of Sporadic Task Systems,” in RTSS, 2005.

 Settings:

◦ 2 cores

◦ 2 tasks with execution time 10 arrive at time 0

◦ 1 task with execution time 19 arrives at time 1

 Global Scheduling

◦ Core 1:

◦ Core 2:

 Partitioned Scheduling

◦ Core 1:

◦ Core 2:

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 First-Fit: choose the one with the smallest index

 Last-Fit: choose the one with the largest index

 Best-Fit: choose the one with the maximal utilization

 Worst-Fit: choose the one with the minimal utilization

Assigning a task with utilization equal to 0.1

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Core 1 Core 2 Core 3 Core 4

First

Fit

Last

Fit

Best

Fit

Worst

Fit

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

core 2

core 4

 Functional Partition Data Partition

core 1 core 2

core 3 core 4

core 3

core 1

•Flexibility

•Scalability

•Load-balance

•Hardware/software co-design

•Parallelism in sequential program

43
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Hardware Model

◦ Homogeneous multiple processors

◦ Two types of shared memory

modules with different access latencies

◦ Limited space of each memory module

 Task Model

◦ An implicit-deadline sporadic task set is considered

◦ Each implicit-deadline sporadic task is characterized with

 The relative deadline

 The minimum inter-arrival time

 The worst case execution time

◦ The worst case execution time depends on the memory allocation

Globally Shared

Slow Memory

Local Memory

44
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The Goal of Our Algorithm

◦ Minimize the maximum utilization

of processors of a system

 The Constraints of the Problem

◦ All tasks meet their deadlines

◦ The required amount of blocks of each memory pool does not

exceed the size of the pool

If the maximum utilization is no more than

100%, a feasible solution is derived by

earliest-deadline-first scheduling scheme1

[1] C. L. Liu and James W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,” in Journal of the ACM, 1973.

 Offline Profiling of the Worst Case Execution Time

 Static Memory Allocation and Task Partition

45
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

ANSI-C

Sources

WCET-Aware

C Compiler

Memory Allocator

Worst-Fit

Task Assigner
Memory Allocation

and Task Partition

Greedy Analyzer for

Special Cases

Dynamic Programming

for General Cases

aiT WCET

Analyzer

 The First Phase: Memory Allocation

◦ Produce the optimal solution of a memory allocation sub-

problem

◦ Derive the lower bound of the whole problem

 The Second Phase: Task Partition

◦ Sort all tasks in a non-increasing order of their utilizations

◦ Tasks are then sequentially assigned to the processor with the

currently lowest utilization

46
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Lemma 1: if the memory allocation is already given,

𝑚𝑎𝑥 𝑚𝑎𝑥𝑡𝑖∈𝐓 𝑢𝑖 ,
σ𝑡𝑖∈𝐓

𝑢𝑖

𝑀
is a lower bound

◦ 𝐓 is the task set, and 𝑀 is the number of processors

◦ 𝑢𝑖 is the utilization of task 𝑡𝑖 with the given memory allocation

47
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

The maximum utilization

amount of all tasks

The average utilization

of all processors

48
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1) Let task 𝑡𝑖 be the task which needs the highest utilization in the optimal
memory allocation result, and it consumes l blocks of the fast memory pool

2) Allocate exactly l blocks of the fast memory for 𝑡𝑖

3) Reduce the utilization of other tasks to make sure that 𝑡𝑖 has the highest

utilization

4) Reduce the average utilization as much as possible

5) Iteratively try all the possible combinations of 𝑡𝑖 and l

Choose as Critical Task

Critical Utilization
Average Utilization

Utilization
Tasks

49
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1) Based on the result of the proposed memory allocation

algorithm, sort all tasks in a non-increasing order of

their utilization

2) Sequentially assign tasks to the processor with the

currently lowest utilization

• It takes only a polynomial time complexity

• It has a tight (2 -
2

𝑀+1
)-approximation bound for

the minimization problem, where 𝑀 is the

number of processors

50
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 An Island-Based Multi-Core Platform

◦ A global memory pool and multiple islands

◦ A policy to turn on/off islands to manage resources

 The Purpose of Our Designs

◦ Meet real-time requirements

◦ Minimize the number of islands

: A system

: An island
Globally Shared Memory Modules

Private Memory Private Memory

…
Private Memory

How many islands

should we use?

 Goal:

◦ Minimize the number of required islands

 Constraints:

◦ All implicit-deadline sporadic tasks meet their deadlines

◦ No memory space limitation is violated

 Task Model– Implicit-Deadline Sporadic Tasks:

◦ A relative deadline

◦ The minimum inter-arrival time

◦ The worst case execution time

51
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Hardware Model– Island-Based Multi-Core Platforms:

◦ Cores in an island share a local memory pool

◦ An island consists of multiple homogeneous cores

◦ A system consists of multiple islands

◦ A system consists of a large global memory pool

52
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

53
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

1. Minimize the value of
𝑈𝑖
𝑗

𝑀
+

𝑗

𝐵𝐿
for each task

2. Sort all tasks in a non-

increasing order by the

required number of the local

memory blocks

3. Partition all tasks to islands

by the first fit strategy

4. Assign tasks onto cores by

the first fit strategy

5. Allocate a new island if

there is no feasible

assignment for a task

53

Island 1

Local Memory

Core 1 Core 2

Island 2

Local Memory

Core 1 Core 2

Normalized

utilization

Normalized

required size

Candidates of task configurationA real-time task set

 Theorem 3: the properties of the algorithm

◦ The time complexity is O(𝐓 2 + γ), where 𝐓 is the number

of task, and γ is the number of the candidates of memory

allocation

◦ The derived result (number of the required islands) is bound by

4𝑂𝑃𝑇 + 2, where 𝑂𝑃𝑇 is the result of the optimal solution

 The value of the proposed algorithm

◦ Provide the lower bound for an IBRT problem instance

◦ Provide a bounded solution for island-based multi-core system

synthesis

54
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 82 real-life benchmarks from MRTC, MediaBench, UPDSP,

NetBench, and DSPstone

 The worst-case execution time of each task is generated by aiT

which is based on Infineon TriCore TC1797

 The number of cores in an island is 4

55
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Include the 82 benchmarks for the two experiments

 Vary the number of cores per island for the left experimental

results

 Vary the size of the local memory for the right experimental

results

56
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 LDDMM-DSI conducts image registration while

preserving the topology conservation and invertibility

 However, the precision of the outcome is at the

expense of the execution time

 Why we need image registration?

58
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Target image 𝐼0 Template image 𝐼1

Standard BrainPatient Brain Mapping

Inverse Function

Diagnosis

 LDDMM-DSI

◦ A large deformation diffeomorphic metric mapping solution

for diffusion spectrum imaging datasets

 Motivation

◦ Medical Image Center

 Huge amount of medical images are received for processing

 How to exploit the throughput becomes important

◦ Instant checking of many different possible diseases

 Different weighted MRI images target different soft tissues

 Thus, different registration processes will be required to conduct

thorough checking

59
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 The input data contain

both i-space (3D) and q-

space (3D)

 The output data contain

mainly the velocity files,

which is around 2 GB in

total

 The intermediate data

are larger than 30 GB

60
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Source: http://www.xilinx.com/partners/90nm/ http://www.soccentral.com/results.asp?CatID=488&EntryID=30730

Price dropping Logic Element count growing (exponentially!)

99.0 USD

Parallela board
(Xillinx FPGA)

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 61

http://www.xilinx.com/partners/90nm/
http://www.soccentral.com/results.asp?CatID=488&EntryID=30730

 Acceleration Techniques on FPGA

◦ Customized Datapath

◦ Pipelined Execution

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

re
g

is
te

rs

re
g

is
te

rs

re
g

is
te

rs

re
g

is
te

rs

re
g

is
te

rs

re
g

is
te

rs

re
g
is

te
rs

62

 Since throughput =
1

longest stage time

 To achieve optimal performance:
◦ Minimize idle time

◦ Trade area and bandwidth for performance

 Area and bandwidth are limited resource!

300 ms

Stage 1 Stage 2 Stage N

150

ms
210 ms

Pipeline

Workload T Idle

300 ms 300 ms 300 ms

An unbalanced stage

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 63

 Example: Nallatech PCIE
385n (Altera Stratix V A7
FPGA)
◦ Logic element count: 622000

◦ Memory bandwidth: 25 GB/s

FPGA

DRAM

Memory

Access

PCIe bus

• Model:

• A: total area (gate count)

• B: total memory bandwidth

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 64

 A pipeline workload T has N stages of execution

◦ The i-th stage 𝜏𝑖 has a degree 𝐷𝑖 of data parallelism

 When a hardware instance of 𝜏𝑖 is programmed on FPGA

◦ Consumes FPGA area: 𝐴𝑖
◦ Requires memory bandwidth: 𝐵𝑖
◦ Requires time 𝑇𝑖 to execute a single work-item

 Let 𝑑𝑖 be the number of programmed hardware instance of 𝜏𝑖
◦ Required area: 𝐴𝑖𝑑𝑖
◦ Required bandwidth: 𝐵𝑖𝑑𝑖

◦ Execution time: Ti
𝐷𝑖

𝑑𝑖

Number of batches
Time to process a batch

300ms

Stage 1 Stage 2 Stage N

150

ms
210ms

Pipeline

Workload T
Idle

300 ms 300 ms 300 ms

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 65

 METM (Maximum Execution Time Minimization

problem)

 Problem definition:

Minimize

max
∀𝜏𝑖∈𝐓

Ti
𝐷𝑖
𝑑𝑖

subject to

∀𝜏𝑖∈𝐓

𝐴𝑖 ⋅ 𝑑𝑖 ≤ 𝐴

∀𝜏𝑖∈𝐓

𝐵𝑖 ⋅ 𝑑𝑖 ≤ 𝐵

1 ≤ 𝑑𝑖 ≤ 𝐷𝑖 , ∀𝜏𝑖 ∈ 𝐓

Area constraint

Bandwidth constraint

Stage execution time

Pipeline stage time

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 66

 DP-based algorithm: DP-METM (Maximum Execution

Time Minimization)

𝑣 𝑥, 𝑎, 𝑏 =
min

1≤𝑑𝑥≤𝐷𝑥
max 𝑣 𝑥 − 1, 𝑎′, 𝑏′ , 𝑇𝑥

𝐷𝑥
𝑑𝑥

, if ቊ
0 ≤ 𝑎 ≤ 𝐴
0 ≤ 𝑏 ≤ 𝐵

∞ , otherwise

Where 𝑎′ = 𝑎 − 𝐴𝑥 ⋅ 𝑑𝑥 , 𝑏
′ = 𝑏 − 𝐵𝑥 ⋅ 𝑑𝑥 and 𝑥 ≥ 1

 Algorithm DP-METM is optimal

 Complexity of DP-METM is: O(𝐓 ⋅ 𝐴2 ⋅ 𝐵)

min time of first x-1 stages exec time of x-th stage

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 67

 Input parameter measurement

◦ 𝐴𝑖 , 𝐵𝑖 can be obtain from the compiler output

◦ 𝑇𝑖 need to be measured manually

 Runtime library support

◦ Dispatch stage workload

◦ Exchange data between stages

 Example platform: Nallatech PCIE 385n [1] FPGA card

◦ Using OpenCL toolchain
[1] N. Coporation, “Nallatech 385 Product Brief,” Feb 2014.

𝜏2𝜏1 𝜏𝑁

Buffer

Buffer

Buffer

Buffer

Swap
Buffer

Buffer

Swap

Host

Memory Host

Memory

FPGA Device Memory

© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University 68

